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bstract

In the analysis of longitudinal dispersion data in a classical laboratory experiment, it is usually assumed that the dispersion of species undergoes
ickian behaviour with constant dispersivities. If the length and time scales of an experiment are not sufficient for a tracer to traverse the cylinder
adius and sample the velocity variations, this could give rise to persisting non-Fickian transients that cannot be predicted by the conventional plug
ow dispersion models. Such transients cause the deviation from the Gaussian concentration distribution predicted by the plug models. In this
aper, some shortcomings of the Fickian model are examined and a more general non-Fickian macroscopic dispersion model is provided to give
nsight into some of the factors that contribute to the dispersion process. The analysis describes the transient development of the solute spread and
ome non-Fickian effects associated with it. The extended model provides a set of conditions under which the classical axial plug dispersion model
an be applicable. The model results for tracer dispersion in cylindrical packed beds show that the longitudinal dispersion coefficient converges
o its asymptotic value on a time-scale proportional to R2/〈DT〉 where R is the cylinder radius and 〈DT〉 represents the mean value of the radial
ispersion coefficient DT(r) over the cross-section of the bed.

2007 Elsevier B.V. All rights reserved.
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. Introduction

In a typical tracer injection experiment in confined packed beds, the dispersion coefficients are evaluated by fitting the experimental
oncentration profiles with the plug flow dispersion model solutions. Fickian behaviour of the concentration profile (i.e., a constant
ispersion coefficient during solute travel time) is usually assumed. The final results of the fitting are usually expressed in terms
f PeL versus Pem and/or Rep for various values of Sc. Here PeL and Pem are Peclet numbers based on the longitudinal dispersion
oefficient and molecular diffusion coefficient, respectively, Rep is the Reynolds number based on the particle diameter and Sc is
he Schmidt number. A good review of the work done on evaluating the longitudinal dispersion coefficient, DL, using the plug
ispersion model is provided in Refs. [1,2]. The plug dispersion model has been also used to investigate the dependence of DL on
olumn and porous media properties such as column dimensions, particle size, particle shape, etc. [1,3,4]. In most cases, except very
ew, no check has been made on the possible dependence of the dispersion coefficient on the axial position or the possible existence
f persisting non-Fickian transients. There are, therefore, doubts about the validity of using the plug dispersion model to interpret
xperimental dispersion data. The results for solute dispersion in a tube show that a Gaussian distribution of the injected solute is
nly obtained after a sufficiently long time has elapsed since the release of the solute [5,6]. However and for a variety of reasons

e.g., profiles not measured at a sufficiently long time after the solute injection), the observed concentration profiles are not normally
aussian. The so-called scale problems do exist and may severely limit the predictive capabilities of the plug dispersion model in

valuating the longitudinal dispersion coefficient.
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Nomenclature

c concentration of the solute in the gas phase (kg/m3)
c0 strength of input pulse (kg/m3)
C dimensionless concentration defined in Eq. (3)
de effective diameter defined in Eq. (28)
dp particle diameter (m)
dt tube diameter (m)
DA(r) longitudinal dispersion coefficient at radial position r (m2/s)
〈DA〉 area average longitudinal dispersion coefficient (m2/s)
D∗

A dimensionless axial dispersion coefficient defined in Eq. (3)
D̂L asymptotic longitudinal dispersion in an unconfined packing (m2/s)
DL(θ), DL(t) time dependent, macroscopic axial dispersion coefficient, plug flow dispersion model in Eq. (16) (m2/s)
DL, DL(∞) asymptotic value of the longitudinal dispersion coefficient (m2/s)
Dm molecular diffusion coefficient (m2/s)
DT(r) lateral dispersion coefficient at radial position r (m2/s)
〈DT〉 area average lateral dispersion coefficient (m2/s)
D∗

T dimensionless lateral dispersion coefficient defined in Eq. (3)
D̂T transverse dispersion rate in an unconfined packing with the same spheres and porosity (m2/s)
g a term defined in Eq. (15)
ḡ a term defined in Eq. (A.4)
J0 Bessel function of the zero kind
J1 Bessel function of the first kind
Kp porous media permeability (m2)
lβ characteristic length defined in Eq. (38)
L the distance from the point of injection (m)
L* pulse dimensionless characteristic length defined
N(βm) [= 2/J2

0 (βm)]
PeL Peclet number ūdp/DL
Pem Peclet number ūdp/Dm
Pep Peclet number defined in Eq. (35)
P̂ep Peclet number defined in Eq. (37)
PeLm dimensionless parameter defined in Eq. (3)
PeRm dimensionless parameter defined in Eq. (3)
r radial co-ordinate (m)
R tube radius (m)
Rep Reynolds number (= ρūdp/μ).
Rp particle radius (m)
Re Reynolds number based on de.
Sc Schmidt number (=μ/ρDm).
t time (s)
t′ dummy variable of integration
T̄ integral transform defined in Eq. (A.5)
u superficial axial velocity (m/s)
u0 interstitial axial velocity (m/s)
ū mean axial velocity
ũ dimensionless axial velocity fluctuation
w dummy variable of integration
x dimensionless axial co-ordinate defined in Eq. (3)
x1 dimensionless axial co-ordinate moving with the mean flow velocity ū

z axial coordinate (m)

Greek symbols
βm eigenvalues of J1(βm) = 0
ε porous medium porosity
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λ dimensionless variable defined in Eq. (A.4)
μ dynamic viscosity of the fluid (N s/m2)
ν kinematic viscosity of fluid (m2/s)
θ dimensionless time defined in Eq. (3)
θ* dimensionless time defined in Eq. (34)
θ̂ dimensionless time defined in Eq. (36)
σ variance of the concentration distribution
τ a parameter defined in Appendix E.
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ζ dimensionless radial co-ordinate in Eq. (3)

It is worth mentioning that in the groundwater literature, it has been aware for a long time that non-Gaussian behaviour or
cale-dependent dispersion coefficients are the norm [7–10]. Non-Fickian behaviour with scale related dispersion coefficients has
een studied using various approaches such as stochastic, deterministic and fractal approaches [10,11–14]. Others used Nuclear
agnetic Resonance (NMR) and the random walk method to explain the non-Fickian behaviour for homogeneous and heterogeneous

tructures [9,15,16]. The scale-dependent dispersion in groundwater hydrology is mainly due to the large scale variations in hydraulic
onductivity and the maximum dispersivity is only reached after all variations in the hydraulic conductivity are sampled by the tracer
17].

We will not consider groundwater dispersion in this paper and only consider transient development of solute dispersion in
ylindrical beds packed with uniform solid particles (e.g., spherical particles) as is usually the case in packed bed reactors. The
orosity in this case shows an oscillatory variation in the radial direction due to the existence of the wall confinement, the so-called
wall effect”, and the flow profile exhibits a similar oscillatory behaviour [18,19]. Packed beds are confined and the flow in most
pplications is non-Darcy which is not usually encountered in groundwater flow.

Non-Fickian behaviour or scale dependent dispersion coefficients are frequently encountered at both laboratory and field scales
ispersion experiments, with homogeneous and heterogeneous porous media [8,16,20,21,22]. The possible dependence of the
ongitudinal dispersion coefficient on the axial position in the packed bed was studied using the axial plug flow dispersion model [4].
ccording to reference [4], the longitudinal dispersion coefficient is expected to be constant for the dimensionless time θ such that

ˆ = (L/dp)(1/P̂ep)(1 − ε)/ε � 0.3. Recent developments in the experimental techniques such as NMR spectrometer and particle
maging have allowed researchers to measure the temporal and spatial tracer development at the pore level [23–27]. In parallel,
dvances in the computational power allow pore–scale flow and tracer dispersion to be simulated by implementing numerical
echniques such as Lattice–Boltzman (LB) and random walk particle tracking methods [19,28,29]. However, there are limitations
ssociated with such experimental and computational techniques. NMR experiments, for example, are limited by the signal decay
nd are usually performed using cylindrical packed beds with lengths in the range between 50dp–100dp. Computational limitations
nd the level of accuracy required restrict pore–scale simulation to beds of smaller sizes than those usually used in NMR experiments
i.e., cylinders with radius R < 10dp [19], where dp is the particle diameter). Therefore, pore–scale simulation is considered to be a
eliable tool only for short time analysis of the dispersion process (i.e., t < 20dp/ū) where ū is the mean longitudinal velocity in the
ed. This time scale is very short when compared to the time required for a typical tracer injection experiment or the mass transport
rocess in most packed bed reactors [30]. Therefore, there is still the need to introduce developments to the existing dispersion
odels at both the pore–scale and macroscopic scale to improve their ability in evaluating the asymptotic dispersion rates and to be

ble to capture any possible non-Fickian transients.
In this paper, we will extend the conventional axial plug flow dispersion model by including additional transient higher order

ispersion terms, usually neglected under the Fickian assumption, that contribute to the deviation from Guassianity. In doing so, we
im to provide a more comprehensive picture of the dispersion process by providing a better description of the different dispersion
echanisms taking place and show how they affect the time scales needed to reach Gaussinity. The extensions will introduce a

et of criteria equations other than those proposed in refs. [4,31] for using the plug dispersion models. A new criterion equation
n the bed length will be derived and validated against the conditions used in previous experiments which adopt the conventional
lug dispersion models in their analysis and also against recent pore–scale simulation results which take into account the so called
wall effect” [19,33]. In this manner, the extended macroscopic non-Fickian model will establish a cross-link between the detailed
ore–scale simulation results and the macroscopic treatment of the dispersion process and passing information between the two
evels. Transient effects associated with the non-mechanical dispersion mechanisms (e.g., hold up and boundary layer dispersion

echanisms [32]) will not be considered in this study. In sphere packings, mechanical sources dominate longitudinal dispersion

nd there is no experimental evidence that shows a significant contribution of the hold-up dispersion in the case of impermeable
articles [33]. We will apply the model to study solute dispersion in a confined bed of randomly packed spherical particles. The
eterogeneities in the packing will only be a result of the wall confinement and for simplicity, we will assume the Darcy model to
e valid.
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. Problem formulation

The basic mass transport equation for solute dispersion in cylindrical packed beds under conditions of radial flow non-uniformity
s given by [34]

∂c

∂t
+ u0(r)

∂c

∂z
= DA(r)

∂2c

∂z2 + 1

r

∂

∂r

(
rDT(r)

∂c

∂r

)
(1)

r, referring to the empty cross-section

ε
∂c

∂t
+ u(r)

∂c

∂z
= εDA(r)

∂2c

∂z2 + 1

r

∂

∂r

(
rεDT(r)

∂c

∂r

)
(2)

here u is the superficial velocity (u = εu0) and ε is the porosity. Since the axial and radial dispersion coefficients DA and DT are
unctions of the fluctuating flow profile and molecular diffusion effect, they are also functions of the radial position [31,34]. We
ake Eq. (2) dimensionless by defining the following non-dimensional variables

C = c

c0
, x = z

R
, θ = ūt

R
, D∗

T = DT

〈DT〉 , D∗
A = DA

〈DA〉 , ζ = r

R
, PeLm = ūR

〈DA〉 , PeRm = ūR

〈DT〉 (3)

here 〈DT〉 and 〈DA〉 are the area averaged values of DT and DA over the bed cross-section defined as [〈DT〉 = (2/R2)
∫ R

0 rDT(r) dr]

nd [〈DA〉 = (2/R2)
∫ R

0 rDA(r) dr], respectively. D∗
A and D∗

T are the dispersion coefficients DA(r) in the longitudinal direction and
T(r) in the transverse direction normalised by their area-averaged values. The dimensionless time θ measures the time for the

ransport of the tracer downstream by the mean flow velocity u. PeLm, the Peclet number for the bed, represents the ratio between
dvective and dispersive mechanisms quantified by the average longitudinal dispersion coefficient 〈DA〉. PeRm on the other hand
s the Peclet number which represents the ratio between advective and dispersive mechanisms quantified by the average transverse
ispersion coefficient 〈DT〉.

Substituting Eq. (3) into Eq. (2) yields

ε
∂C

∂θ
= −u

ū

∂C

∂x
+ ε

D∗
A

PeLm

∂2c

∂x2 + 1

PeRm

1

ζ

∂

∂ζ

(
ζεD∗

T
∂C

∂ζ

)
(4)

he concentration C, flow velocity u, local dispersion coefficients (D∗
A and D∗

T) and porosity ε can be expressed in terms of their
rea averaged values (C̄, ū, D̄∗

A, D̄∗
T, ε̄) and fluctuations (C̃, ũ, D̃∗

A, D̃∗
T, ε̃) from the area averages as

C = C̄ + C̃ (5)

u = ū + ũ (6)

D∗
A = D̄∗

A + D̃∗
A (7)

D∗
T = D̄∗

T + D̃∗
T (8)

ε = ε̄ + ε̃ (9)

here

C̃ = ũ = ¯̃D
∗
A = ¯̃D

∗
T = ε̃ = 0 (10)
ubstituting Eqs. (5)–(9) into Eq. (4), taking the area average of the resulting equation and making use of Eq. (10) and the boundary
ondition ∂c̃/∂ξ|ξ=1 = 0, the transport equation for C̄ when expressed in terms of the moving coordinate x1 = x − ūθ is

ε̄
∂C̄

∂θ
= − ∂

∂x1
(ũC̃) − ∂(ε̃C̃)

∂θ
+ 1

PeLm

[
ε̄
∂2C̄

∂x2
1

+ ε̄
∂2(D̃∗

AC̃)

∂x2
1

+ ∂2(ε̃C̃)

∂x2
1

+ (ε̃D̃∗
A)

∂2C̄

∂x2
1

+ ∂2(ε̃D̃∗
AC̃)

∂x2
1

]
(11)

he quantity (ũC̃) is the axial component of the dispersion that represents the flux associated with the correlation between the fluc-
uations in velocity, ũ, and concentration, C̃, relative to their averaged values. The new quantity (D̃∗

AC̃) is the additional contribution
o dispersion caused by deviations in the local dispersion coefficients.
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The equation describing the concentration perturbation C̃ is obtained by substracting Eq. (11) from Eq. (4) as

ε̄
∂C̃

∂θ
+ ε̃

∂C̄

∂θ
= −ũ

∂C̄

∂x1
+ ε̄

PeLm

∂2C̃

∂x1
2 + ε̄

PeRm

[
1

ζ

∂

∂ζ

(
ζ
∂C̃

∂ζ

)
+ 1

ζ

∂

∂ζ

(
ζD̃∗

T
∂C̃

∂ζ

)]

+ 1

PeRm

[
1

ζ

∂

∂ζ

(
ζε̃

∂C̃

∂ζ

)
+ 1

ζ

∂

∂ζ

(
ζε̃D̃∗

T
∂C̃

∂ζ

)]
+
[

ε̃

PeLm
+ ε̄ D̃∗

A

PeLm

]
∂2C̄

∂x1
2 − ∂

∂x1
[(ũC̃) − ũC̃]︸ ︷︷ ︸

I

− ∂

∂θ
[ε̃C̃ − (ε̃C̃)]︸ ︷︷ ︸

II

+ ε̄

PeLm

∂

∂x1
2 [D̃∗

AC̃ − (D̃∗
AC̃)]︸ ︷︷ ︸

III

+ 1

PeLm

∂

∂x1
2 [ε̃C̃ − (ε̃C̃)]︸ ︷︷ ︸

IV

+ 1

PeLm

∂

∂x1
2 [ε̃D̃∗

AC̃ − (ε̃D̃∗
AC̃)]︸ ︷︷ ︸

V

+ 1

PeLm
[ε̃D̃∗

A − (ε̃D̃∗
A)]︸ ︷︷ ︸

VI

∂2C̄

∂x1
2 (12)

here ũ in Eq. (12) is normalized by ū. For small perturbations and neglecting triplet perturbed quantities that could result when
ultiplying Eq. (12) by ũ or D̃∗

A to solve for the terms (ũC̃) and (D̃∗
AC̃), the final approximate form of the perturbed concentration

quation to be solved may be written as

ε̄
∂C̃

∂θ
+ ε̃

∂C̄

∂θ
= −ũ

∂C̄

∂x1
+ ε̄

PeLm

∂2C̃

∂x2
1

+ ε̄

PeRm

[
1

ζ

∂

∂ζ

(
ζ
∂C̃

∂ζ

)]
+
[

ε̃

PeLm
+ ε̄ D̃∗

A

PeLm

]
∂2C̄

∂x2
1

(13)

q. (13) can be re-written as

∂C̃

∂θ
= 1

PeLm

∂2C̃

∂x2
1

+ 1

PeRm

[
1

ζ

∂

∂ζ

(
ζ
∂C̃

∂ζ

)]
+ g(x1, θ, ζ) (14)

here

g(x1, θ, ζ) = − ũ

ε̄

∂C̄

∂x1
+
[

ε̃

ε̄PeLm
+ D̃∗

A

PeLm

]
∂2C̄

∂x2
1

(15)

q. (14) is solved using the integral transform technique [35] as shown in Appendix A. The final mean solute concentration equation
an be written as

∂C̄

∂θ
= K0(θ)

∂2C̄

∂x2
1

+ K1(θ)
∂2C̄

∂x1∂θ
+ K2(θ)

∂3C̄

∂x3
1

+ K3(θ)
∂3C̄

∂x2
1∂θ

+ K4(θ)
∂4C̄

∂x4
1

+ K5(θ)
∂4C̄

∂x3
1∂θ

+ · · · (16)

here K0(θ)–K5(θ) are time variable coefficients defined in Appendix B. The most important coefficients are K0(θ) (the effective
xial dispersion coefficient in the bed), K2(θ) (representing the contribution of ũ, D̃∗

A and ε̃ in the bed to the distribution skewness)
nd K3(θ) and K4(θ) (representing the contribution of ũ, D̃∗

A and ε̃ to the distribution flatness). As will be shown later, as time
ecomes larger and larger, the transient coefficients K0(θ)–K5(θ) in Eq. (16) reach their asymptotic behaviour and Eq. (16) reduces
o

∂C̄

∂θ
= K0(∞)

∂2C̄

∂x2
1

+ K1(∞)
∂2C̄

∂x1∂θ
+ K2(∞)

∂3C̄

∂x3
1

+ K3(∞)
∂3C̄

∂x2
1∂θ

+ K4(∞)
∂4C̄

∂x4
1

+ K5(∞)
∂4C̄

∂x3
1∂θ

+ · · · (17)

he asymptotic coefficients K0(∞)–K5(∞) are defined in Appendix B.
It is clear from Eq. (17) that attaining the asymptotic behaviour of K0(θ)–K5(θ) does not mean that the effect of higher order

erivatives of C̄ on the distribution profile (e.g., skewness and flatness) is minimized/neglected. Therefore and as will be discussed
ater, additional conditions have to be satisfied to minimize/neglect their effects.

Without the dispersion term ∂3C̄/∂x2
1∂θ, the transport equation for large time analysis, Eq. (17), is similar to that obtained in

ef. [34]. Therefore, the Carbonell dispersion model [34] cannot provide information on the temporal development of the dispersion
oefficients and does not shed light on the factors contributing to the deviation from the normal distribution. It is worth mentioning
hat the general form of the transport Eq. (16) is similar to that obtained using the stochastic analysis to describe solute dispersion
n stratified (hydraulic conductivity varies only in one direction) aquifer [10].
. Analysis and results

To simplify our analysis, we will restrict ourselves to the application of Eq. (1) referring to the cross-section of the fluid phase (we
et ε̃ = 0 and ε̄ = 1 in K0(θ)–K5(θ) equations in Appendix B). The temporal development of the effective axial dispersion coefficient
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ig. 1. Restriction on length to diameter ratio of equipment if the dispersed plug flow models are to be applicable (at dt/dp = 15 and ε = 0.38), “Reprinted from ref.
31], p. 263, Copyright (2005), with permission from Elsevier”.

L(θ) when expressed as a ratio of its asymptotic value DL(∞) is given by

DL(θ)

DL(∞)
=
∑∞

m=1ũJ0(βm, ζ)/(N(βm))((1 − e−λθ)/λ)
∫ 1

0 ζJ0(βm, ζ)ũ dζ + (1/PeLm)∑∞
m=1ũJ0(βm, ζ)/(λN(βm))

∫ 1
0 ζJ0(βm, ζ)ũ dζ + (1/PeLm)

(18)

he temporal development of the fourth term to the right hand side of Eq. (16) defined by V(θ), which contributes to the flatness of
he concentration profile can be normalised by its asymptotic value V(∞) (see Appendix B) as

V (θ)

V (∞)
=
∑∞

m=1ũJ0(βm, ζ)/(N(βm))((1 − (1 + λθ)e−λθ)/λ2)
∫ 1

0 ζJ0(βm, ζ)ũ dζ∑∞
m=1ũJ0(βm, ζ)/(λ2N(βm))

∫ 1
0 ζJ0(βm, ζ)ũ dζ

(19)

he asymptotic axial dispersion coefficient DL(∞) in Eq. (18) reduces to essentially the same one for solute dispersion in empty
ubes [i.e., 1/Pe = 1/PeLm + hPeRm; h (the velocity constant) = 1/48 and Pe = ūR/DL(∞)] [5,6]. When using the approximation
roposed in ref. [36] for the velocity profile in a cylindrical packed bed,we obtain the value of h = 1/1230 which is approximately
qual to the value of h = 0.0008 obtained in ref. [31]. Looking at different transient terms (see Appendix B) in Eq. (16), it is possible
o obtain the necessary restrictions for such transients to become time-independent:

O(e−λθ) � 1 (20)

nd

O((1 + λθ)e−λθ) � 1 (21)

he condition in Eq. (20) is the same as that proposed in ref. [31]. The condition in Eq. (21) results from the transient dispersion
erms which contain the function 1−(1 + λθ)e−λθ . One can express such restrictions in terms of equipment dimensions. If a ratio of
0:1 is taken for the inequalities in Eqs. (20) and (21) [31], the approximate conditions to be fulfilled are:

e−λθ ≈ 0.1 (22)

nd

(1 + λθ)e−λθ ≈ 0.1 (23)

he condition in Eq. (22) yields

L

dt
> 0.04(Re)

dt

de

ν

〈DT〉 (24)

ig. 1 shows the restrictions on equipment L/dt ratio according to criterion Eq. (24) for the cases of an empty tube and a packed bed
ith dt/dp = 15 and ε = 0.38 [31]. The condition in Eq. (23) requires the solution of the equation

14.7θ∗ = ln(10 + 147θ∗) (25)
here

θ∗ = L〈DT〉
(ūR2)

= 〈DT〉t
(R2)

(26)
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nd θ* represents the dimensionless dispersion time. L/ū represents the characteristic time for a dispersion experiment and 〈DT〉/R2

cale measures the time for the transverse transport quantified by 〈DT〉. The solution of Eq. (25) is θ* = 0.264 which yields

L

dt
> 0.06(Re)

dt

de

ν

〈DT〉 (27)

here de represents the effective or hydraulic diameter (4 × free volume of fluid/wetted area) [31]. It is used as a characteristic
ength in the dimensionless number de/dt defined as [31]

de

dt
= εdt

3/2(dt/dp)(1 − ε) + 1
(28)

e is the Reynolds number based on de. For comparison, Taylor criterion for dispersion in a tube could be written as

L

dt
> 0.06(Re)

ν

Dm
(29)

here for empty tubes ε = 1, hence dt = de. Therefore, the criterion given by Eq. (27) reduces to that obtained for dispersion in empty
ubes where 〈DT〉 = Dm [5]. Note that the final value of θ* and in turn the constant value in Eq. (27) depends on the required accuracy
evel (i.e., the ratio taken for the inequalities in Eqs. (20) and (21)). From the previous analysis, we make the following conclusions.

The time-scale for attaining the asymptotic longitudinal dispersion rates in a packed cylinder is neither the convective (t ∝ dp/ū)
nor the diffusive (t ∝ dp/Dm) time-scales but is proportional to R2/〈DT〉. This result is in accordance with the pore–scale simulations
for tracer dispersion in a fluid flowing through a cylindrical monodisperse sphere packing [19,30].
Comparing Eq. (24) with Eq. (27) shows a difference in the L/dt ratio by a factor of 1.5. Therefore, the data in Fig. 1 should be
corrected by a correction factor of 1.5 in order for all the dispersion coefficients in Eq. (16) to become time-independent.
If criterion Eq. (27) is satisfied, our extended dispersion model for large time analysis reduces to that given by Eq. (17). However,
the reduced dispersion model still contains extra dispersion terms when compared with the classical axial plug dispersion model.
Such terms are expected to contribute to the deviation from the normal Gaussian distribution even at longer times after the
introduction of the solute. For example, the third term to the right hand side of Eq. (17) will contribute to the skewness of the pulse
while the second and fourth terms to the right hand side of Eq. (17) will contribute to the distribution flatness. The classical axial
plug dispersion model only includes the first two terms of Eq. (17) (i.e., ∂C̄/∂θ and ∂2C̄/∂x2

1) and therefore, additional conditions
must be satisfied to avoid skewness and peakedness of the pulse.

Looking at the order of magnitude estimates of the terms (see Appendix B) to the right hand side of Eq. (17), we make the
ollowing conclusions.

The second derivative term will dominate the third derivative in x1 if the condition

PeLm
∑∞

m=1ũJ0(βm, ζ)/(λN(βm))
∫ 1

0 ζJ0(βm, ζ)ũ dζ + 1∑∞
m=1D̃

∗
LJ0(βm, ζ)/(λN(βm))

∫ 1
0 ζJ0(βm, ζ)ũ dζ +∑∞

m=1ũJ0(βm, ζ)/(λN(βm)) + ∫ 1
0 ζJ0(βm, ζ)D̃∗

L dζ
L∗ � 1 (30)

is satisfied where L* is some reference dimensionless pulse length [34] which increases with time, and may be chosen to be the
pulse length relative to the initial pulse width.
The second derivative term will dominate the fourth derivative in x1 if the condition,

PeLm
∑∞

m=1ũJ0(βm, ζ)/(λN(βm))
∫ 1

0 ζJ0(βm, ζ)ũ dζ + 1∑∞
m=1ũJ0(βm, ζ)/λ2N(βm)

∫ 1
0 ζJ0(βm, ζ)ũdζ +∑∞

m=1D̃
∗
LJ0(βm, ζ)/(λN(βm))

∫ 1
0 ζJ0(βm, ζ)D̃∗

Ldζ
L∗2 � 1 (31)

is satisfied.
The second derivative term will dominate the third derivative term in x1 and θ for times such that∑∞

m=1ũJ0(βm, ζ)/(λN(βm))
∫ 1

0 ζJ0(βm, ζ)ũ dζ + 1/(PeLm)∑∞
m=1ũJ0(βm, ζ)/(λ2N(βm))

∫ 1
0 ζJ0(βm, ζ)ũ dζ

θ � 1 (32)

is satisfied.

The second derivative term will dominate the fourth derivative term in x1 and θ for times such that

PeLm
∑∞

m=1ũJ0(βm, ζ)/(λN(βm))
∫ 1

0 ζJ0(βm, ζ)ũ dζ + 1∑∞
m=1D̃

∗
LJ0(βm, ζ)/(λ2N(βm))

∫ 1
0 ζJ0(βm, ζ)ũ dζ

L∗θ � 1 (33)
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he Peclet number PeLm is normally greater than 1 and the pulse characteristic length L* increases with time and is at least of order
. Criteria Eqs. (30)–(33) can now be approximately represented in terms of the order of magnitudes of the Peclet flow parameters
nly as shown in Appendix C. Note that criterion (C.1) (or (30)) should be satisfied in order for the term contributing to the pulse
kewness to be neglected relative to dispersion in the axial direction while criteria (C.2) and (C.3) (or (31) and (32)) should be
atisfied in order for the terms contributing to the pulse flatness to be neglected relative to dispersion in the axial direction. Criteria
qs. (C.1)–(C.4) in Appendix C show that

At large values of PeRm and PeLm and as time becomes larger and larger, criteria Eqs. (C.1) and (C.2) are easier to meet than
criteria Eqs. (C.3) and (C.4).
Comparing criteria Eqs. (C.1) and (C.2) and due to the dependence on L∗2, it is expected that criterion Eq. (C.2) is easier to satisfy
as the time increases especially at low PeRm values.
Criterion Eq. (C.1) must be satisfied if the skewness effect is to be neglected while criteria Eqs. (C.2) and (C.3) should be met to
avoid pulse flatness.
Comparing criteria Eqs. (C.3) and (C.4) it is clear that at larger times, criterion Eq. (C.4) is much easier to satisfy than criterion
Eq. (C.3). Therefore, it is expected that the persisting flatness of the pulse will be merely due to the difficulty in satisfying criterion
Eq. (C.3).

Since there were some approximations involved in the derivation of criteria Eqs. (21)–(29) and Eqs. (C.1)–(C.4), they should be
onsidered to be order of magnitude estimations.

To compare criterion Eq. (27) with Han’s criterion [4], criterion Eq. (27) can be re-written as

θ∗ =
(

L

dP

)
1

Pep

(
dp

R

)2

≥ 0.2646 (34)

here

Pep = ūdp

〈DT〉 (35)

s the particle Peclet number. Criterion Eq. (34) clearly shows that for high Pep numbers, one needs larger L/dp ratios to attain the
symptotic longitudinal dispersion coefficient. For comparison, the time constraint obtained from the experimental observations in
ef. [4] showed that one can expect a constant longitudinal dispersivity as long as

θ̂ =
(

L

dP

)
1

P̂ep

(
1 − ε

ε

)
≥ 0.3 (36)

here

P̂ep = ūlβ

Dm
(37)

s the Peclet number based on a characteristic length lβ associated with the pore spaces in the fluid–solid system [4] instead of the
ube radius R, where

lβ = dp

(
ε

1 − ε

)
(38)

riterion Eq. (34) reduces to criterion Eq. (36) when using the characteristic length scale lβ and setting 〈DT〉 = Dm. However, the
igorous scaling Eq. (36) is in apparent conflict with the time scales obtained from the NMR analysis and pore–scale simulation
esults [23,30]. In the former, criterion Eq. (36) overestimated the asymptotic time scales and in the latter, the time scales in confined
eds were found to be proportional to R2 and D̂T, where D̂T represents the transverse dispersion rate in an unconfined packing with
he same spheres and porosity [19,30]. The present analysis includes DA(r) and DT(r) instead of Dm in Eq. (1). Except for very low
eynolds flow, the time scales proportional to R2/〈DT〉 as the case in packed beds are much smaller than those proportional to R2/Dm
s established in some of the studies [37–41] to be the time scale to converge to the asymptotic Taylor dispersion coefficient. This
an be clearly seen from inspection of Fig. 1 that the L/dt ratio for laminar flow of liquids in empty tubes is much larger than that for
acked beds. Furthermore, the asymptotic time scales also depend on the packing geometry and whether the packing is confined or
ot. For example, simulation results for unconfined random packing of spheres show that the asymptotic dispersion was attained on

convective time scale proportional to dp/ū and when introducing the wall confinement to the packing, the asymptotic time scale is
roportional to R2/〈DT〉 [19,23]. On the other hand, the asymptotic time scale in a periodic array of spheres is proportional to d2

p/Dm
30,33]. It is worth mentioning that in the majority of investigations, including [4], which deals with evaluating the asymptotic DL,
t is usually assumed that the concentration gradient in the axial direction is so steep that the radial concentration gradient can be
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eglected. However, our results and the pore–scale simulation findings [19,30], show that the time scale for attaining the asymptotic
alue of DL is proportional to R2/〈DT〉. This means that the asymptotic rates to attain constant DL grow significantly with R and
re at the same time dependent on 〈DT〉, usually neglected in a typical tracer injection experiment for the evaluation of DL. Table 1
hows some experimental conditions to evaluate DL using the classical plug dispersion model. The data needed for our calculations
n Table 1 has been obtained directly from [2]. The equipment dimension constraint L/dt in Table 1 is evaluated using criterion Eq.
27) which could be re-written as

L

dt
> 0.06Pep

dt

dp
(39)

n most experiments which use the plug dispersion model, the longitudinal and lateral dispersion coefficients are evaluated separately.
o be able to apply criterion Eq. (39), the values of Pep should be evaluated beforehand. The approximate values of Pep were calculated
sing the data and the empirical correlations in the literature [2]. Here, we assume that the plug dispersion model usually used for
he evaluation of Pep is applicable and DT = 〈DT〉 = constant. It is worth mentioning that criterion Eq. (34) is derived on the basis of
ttaining time-independent dispersion coefficients in Eq. (16) and the asymptotic time scale to reach a constant traverse dispersion
oefficient is usually less than that suggested by Eq. (34). It is quite clear from Tables 1 and 2 that the following observations can
e made.

In the majority of the experiments for evaluating DL of liquids in packed beds, criterion Eq. (39) is either marginally satisfied (espe-
cially at low Reynolds flows) or not satisfied at all. This is especially true for the experiments in references [4,45,46,48,49,51,53,54].
This indicates that the axial dispersion coefficients under the reported experimental conditions are still in the transient development
regime. Hence in these cases, the plug dispersion model is not applicable for the analysis of the experimental results.
The experiments in references [42,47,52,56–58] satisfy the length criterion in Eq. (39) for the entire range of Reynold numbers
used. The results in Tables 1 and 2 also show that high Reynolds number flows require larger L/dp ratios in order for criterion Eq.
(39) to be satisfied.
The results in Table 2 show that criterion Eq. (39) is easier to satisfy for the case of gases in packed beds in accordance with the
early findings for solute dispersion in tubes [5].

Except in Ref. [4], no systematic effort was made by researchers to study the possible dependence of the longitudinal dispersion
oefficient on the axial position. Furthermore, the experimental conditions under which criterion Eq. (36) was obtained do not satisfy
he proposed criterion Eq. (39). This raises justifiable doubts regarding the validity of criterion Eq. (36) which was also criticised by
thers [19,23]. In fact, in the derivation of criterion Eq. (36), the standard plug dispersion model was used to analyse the dispersion
ata and to investigate the dependence of DL on position [4], which is inappropriate. Despite that, many researchers adopted criterion
q. (36) or used large dt/dp ratios in order to verify the use of plug dispersion models [58,70–72]. Furthermore, criterion Eq. (36)
oes not take into account the wall effect and therefore, it is not expected to be accurate especially at low dt/dp ratios. For low aspect
atios, say dt/dp < 10, the plug flow assumption fails due to flow non-uniformities [73,74]. On the other hand, using large dt/dp ratios
e.g., dt/dp > 10) to ensure a more uniform profile over a large part of the bed cross section will significantly increase the asymptotic
ime rates of DL(t), according to the present model and pore–scale simulation results findings [19,30]. This is doing the opposite to
hat should be done in ensuring a constant DL.
In Table 3, we evaluated criteria Eqs. (36) and (39) for some experiments. The order of magnitudes of L/dt predicted by criterion

q. (39) are in apparent conflict with those predicted by criterion Eq. (36) for the cases presented in Table 3. For example, Hans
riterion Eq. (36) for the experiments in references [45,46] overestimated the L/dp ratio predicted by the present model especially at
arge values of Peclet number. Furthermore, Hans criterion underestimated the L/dt ratios for the experiments in references [60,64].
his apparent conflict in the order of magnitudes of the asymptotic time scales can be mainly attributed to two reasons. First is the
rror in plotting DL(t) as a ratio of DL(ti)/DL(t5); i = 1, 2, 3 and 4 where DL(t) was measured at five different locations along the
ed. Without this representation of DL(t) and under Han’s experimental conditions, DL(t) will not have reached its asymptotic rate
n their experiments [19]. Furthermore, the bed dimensions in Hans experiment do not satisfy criterion Eq. (39) proposed in this
tudy as shown in Table 1. This raise serious doubts regarding the applicability of criterion Eq. (36). Second is the possible effect of
all confinement on the asymptotic dispersion rates which was not taken into consideration in ref. [4].
In Table 4 we listed the experimental conditions and the length scales as reported in ref. [19] for a number of random sphere packings

n cylinders with different radii. Comparing the length scales (L/dt ratios without brackets in Table 4) over which the longitudinal
ispersion coefficients were evaluated in ref. [19] with those predicted by Eq. (27) clearly reveals the following observations.
The L/dt ratios for cylinder packings #7 and #9 satisfy the L/dt restriction predicted by criterion Eq. (27). It should be noted from
Table 4 that the actual L/dt ratios of the different cylinder packings are larger than the length scales over which the dispersion
coefficients were evaluated [19].
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Table 1
Some expeiments for evaluating DL of liquids in packed beds

Reference Solvent Solute Packed bed ε dp (mm) L (mm) dt (mm) Re Sc L/dt L/dt Eq. (39)

Danckwerts [42] Water Red dye Raschig rings 0.62 9.5 1400 48.3 22 1858 28.98 4.48
Kramers and Alberda [43] Water NaCl Raschig rings 0.75 9.5 340 74 75–150 560 4.6 5.06–5.86
Jacques and Vermeulen [44] Water NaNO3 Glass spheres 0.26–0.4 5.6-19.1 304.8–640 66.0 5.3–1940 820 4.6–9.69 0.65–5.45
Carberry and Bretton [45] Water NaNO3 Glass spheres 0.37–0.65 0.5–6.0 152–914 38.1 1.5–940.2 1858 3.98–23.98 2.06–76.2
Ebach and White [46] Water Blue dye Glass sphere 0.34–0.629 0.21–6.73 1524 50.8 0.02–40 1858 30 2.47–174.5
Strang and Geankopolis [47] Water NaCl Glass sphere 0.411–0.678 6.0–11.6 382–580 41.9 5.0–31.8 894 9.11–13.6 3.87–6.2
Cairns and Prausnitz [48] Water KCl Glass sphere 0.38 1.3–3.2 142–609.6 60.9 3.5–1700 770 2.33–10 12.9–41.89
Liles and Geankopolis [49] Water 2-Naphtol Glass sphere 0.36–0.4 0.47–6.13 58.5–1740 50.8 2.4–105 743 1.15–34.25 2.45–98.73
Harrison et al. [50] Water Xylene-Cyanol Glass sphere 0.4a 38.1 4877 100 20–100 570 48.77 0.88–1.3
Hiby [51] Water NaCl Glass sphere 0.4a 0.5–16 400 90 0.03–70 545 4.44 1.74–63.68
Hennico et al. [52] Water NaNO3 Glass sphere 0.4a 9.6–19.1 305–60046 63.5 3–300 820 4.8–945 2.0–6.5
Pfannkuch [53] Water NaCl Glass spheres or Sand 0.34–0.39 0.35–2.1 750–1500 75–120 0.00025–3.45 560 6.25–20 2.43–53.05
Miller and King [54] Water NaNO3 Glass spheres 0.39 0.051–1.4 140–560 12.7 0.0035–36 730 11–44 1.2–99.37
Smith and Bretton [55] Water Blue dye Glass sphere 0.4a 1.0–3.0 304.8–2134 38.1 10–1000 1858 8–56 3.72–24.9
Chung and Wen [56] Water Na2C20H10O5 Glass spheres 0.4 2.0–6.25 810 51 25–320 675 15.88 2.47–11.75
Miyauchi and Kikuchi [57] Water NaCl Glass sphere 0.398 1.48 150–600 20 0.004–13.5 665 7.5–30 1.85–7.78
Han et al. [4] Water NaCl Glass sphere 0.39–0.41 10–15.8 1500 270 0.13–5.2 560 5.55 7.83–3.58
Guedes de Water NaCl Glass sphere 0.37 0.625 3000 47 0.02–89.1 57–75463.829 5.33–23.45
Carvalho and Delgado [58] 0.38 0.462 700 35 0.02–34.7 754–193820 22.33–29.6

a Assumed value.
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Table 2
Some expeiments for evaluating DL of gases in packed beds

Reference Solvent Solute Packed bed ε dp (mm) L (mm) dt (mm) Re Sc L/dt L/dt Eq. (39)

McHenry and Wilhem [59] H2 N2 Glass Spheres 0.388 3.23 280.4–887 49.58 10.4–379 0.3–1 5.65–17.8 2.08–4.25
Carberry and Bretton [45] He Air Glass Spheres 0.365 6.4 152.4–914.4 25.9 0.015–0.1 0.3 5.88–35.2 0.0015–0.01
Blackwell et al. [60] Argon He Sand 0.339 0.21 36576 161.5 0.0058–0.39 1.9 226 0.71–38.4
DeMaria and White [61] Air He Raschig rings 0.4a 6.35–12.7 1422.4 101.6 18.6–198 0.3 14 1.43–4.36
Sinclair and Potter [62] Hgvap Air Glass Sphere 0.4 0.44–1.4 457.2 50.8 1.25–21.1 1.2 9 3.2–29.3
Evans and Kenney [63] N2 H2 Lead shot 0.36–0.374 0.34–2.6 3200 25.9 0.5–10 0.3–0.85 123 0.12–14.9
Edwards and Richardson [64] Air Argon Glass Sphere 0.368–0.42 0.61–4.57 216–1158 82.55 0.008–50 0.72 2.16–14 0.008–32.95
Balla and Weber [65] CH4 He Glass Spheres 0.365 5.0 1045 74 0.031–1.18 2.20 14.12 0.084–1.77
Urban and Gomezplata [66] He N2 Glass Spheres 0.38–0.41 5.95–16.0 1570 101 0.1–150 0.35 15.54 0.018–4.7
Scott et al. [67] He N2 Steel Spheres 0.181–0.556 7.1–15.8 181–1060 9.39–22.03 0.3–100 0.205–1.662 8.21–112 0.003–1.2
Hsiang and Haynes [68] He N2 Glass Sphere 0.4–0.66 2.1–15.2 1530 3.9–17.2 4–500 0.22 88.95–392 0.015–0.506
Benneker et al. [69] N2 He (SF) Glass Spheres 0.4 2.2–3.9 3000 25–50 5–250 0.23 60–120 0.46–3.08
Yu et al. [70] CH4 CO2 (SF) Sand 0.33–0.41 0.097–0.16 50 4.6 0.004–1.2 2–9 10.86 0.019–8.94

a Assumed value.
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Table 3
Comparison between criteria Eqs. (36) and (39) for some experimental conditions for evaluating DL of liqiuds and gases in packed beds

Reference Solvent Solute Packed Bed ε dp (mm) L (mm) dt (mm) Re Sc Pep ε/(1 − ε) [4] L/dt L/dt Eq. (36) L/dt Eq. (39)

Edwards and
Richardson [64]

Air Argon Glass Sphere 0.368–0.41 0.61–4.57 216–1158 82.55 0.008–50 0.72 0.0053–50.1 2.16–14 0.000012–0.83 0.008–32.95

Carberry and Bretton
[45]

Water NaNO3 Glass Spheres 0.37–0.65 0.5–6.0 152–914 38.1 1.5–940.2 1858 276–7.24 E + 06 3.98–23.98 1.08–2.85E + 05 2.06–76.2

Ebach and White [46] Water Blue dye Glass Sphere 0.34–0.629 0.21–6.73 1524 50.8 0.02–40 1858 26.3–3.26 E + 06 30 0.033–1.29 E + 05 2.47–174.5
Pfannkuch [53] Water NaCl Glass Spheres

or Sand
0.34–0.39 0.35–2.1 750–1500 75–120 0.00025–3.45 560 0.199–3405 6.25–20 0.00017–28.602 2.43–53.05

Blackwell et al. [60] Argon He Sand 0.339 0.21 36576 161.5 0.0058–0.39 1.9 0.0028–0.188 226 1.09 E-06–7.33 E-05 0.71–38.4
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Table 4
Comparison of the length scales used for the pore–scale simulation of Maier et al. [19] and those obtained from criterion Eq. (27)

Cylinder # R L ε̄ L/dt [19] L/dt Eq. (27)

1 6.5dp 48.6dp 0.407 1.5 (3.74) 27.7
2 12.5dp 50.5dp 0.400 0.8 (2.02) 53.2
3 25dp 53.7dp 0.400 0.4 (1.07) 106
4 6dp 486dp 0.410 16 (41) 25.5
5 12dp 524dp 0.410 8.4 (21.8) 51
6 24dp 547dp 0.410 4.2 (11.5) 102
7 5dp 1172dp 0.400 20 (117.2) 21.3
8 24dp 47.7dp 0.399 0.42 (≈1.0) 100
9 4.78dp 955dp 0.400 20 20
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alues of L are based on the mean displacement. Values within brackets are the physical L/dt ratios for different cylinder packings. [dp = 3 mm, Dm = 2.1 × 10−9 m2/s,
= 1.1 × 10−6 m2/s, D̂T/Dm = 15, (D̂L/Dm = 224 for #1, 2, 3 and 8; D̂L/Dm = 200 for #4, 5 and 6; D̂L/Dm = 232 for #7 and 9), Rep = ūdp/ν = 1.0, Pem =

¯dp/Dm = 476].

The length scale over which the longitudinal dispersion coefficients for cylinder packing #4 were obtained is not as close to that
predicted by criterion Eq. (27) as the case for cylinder packings #7 and #9. This is confirmed by the long time predictions using
pore–scale simulation which shows that the asymptotic dispersion rates were only obtained with the cylinder packings #7 and #9
and closely reached with cylinder packing #4 within the available simulation time [19].

However, using pore–scale simulation for long time analysis (i.e., t � 20dp/ū) for beds of intermediate to large lengths, is not
xpected to give an accurate estimate of the asymptotic dispersion values [19]. For example, increasing the spatial resolution, say
rom dp/25 to dp/8, will lead to an error in evaluating the magnitude of the velocity maximum near the wall [19]. This led to
nderestimated values of DL(t) when compared with the higher resolution results. However, improving the accuracy by using higher
patial resolution is totally limited by the computational memory available. Because of that, the Taylor–Aris model was used in ref.
19] to predict the qualitative behaviour of DL(t) in the case of long cylinders.

The NMR results for R = 10dp show that the asymptotic dispersion rates are less than those predicted by criterion Eq. (34) [23].
his is expected as the results in reference [23] do not account for the possible effect of the wall confinement [19]. Therefore, the
symptotic rates were obtained on a convective time scale proportional dp/ū [19,23,30], as in the case for unconfined packings. This
ime scale is within the limits of NMR techniques and is less than the asymptotic scale proportional to R2/〈DT〉.

. Case study

Our case study is restricted to the dispersion of a solute into a fluid flowing through a porous medium where the flow obeys
he Darcy model. It is possible to analyse the pulses of C with time in a convenient fashion by calculating the moments of the C̄

istribution to evaluate the essential distribution features (e.g., the distribution mean μ1, variance μ2, skewness Γ and kurtosis Δ)
s shown in Appendix D.

The functions of DL(θ)/DL(∞) and V(θ)/V(∞) for the case study are given in Appendix D and shown in Fig. 2 while the functions

f variance, skewness and kurtosis (see Appendix D) are shown in Fig. 3a and b. As shown in Fig. 2, the effective axial dispersion
oefficient DL(θ) approaches its asymptotic rate at large times. However, other persisting transients accompanying the dispersion
rocess may take longer times to reach their asymptotic rates as shown in the graph of V(θ)/V(∞) in Fig. 2. For example, to reach
0% of the asymptotic DL(∞) and V(∞) values, mean dispersion lengths of 0.23R times DL(∞) and of 1.5R times V(∞) are needed,

Fig. 2. The functions of DL(θ)/DL(∞)and V(θ)/V(∞) at PeRm = PeLm = 20 and for various values of θ/DL(∞).
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Fig. 3. The moments of distribution at PeRm = PeLm = 20 and for various values of θ/DL(∞). (a) Variance, σ2; (b) skewness, Γ , and kurtosis, �.

espectively. To achieve 90% of the asymptotic DL(∞) and V(∞) values, mean dispersion lengths over 0.95R times DL(∞) and
f 2.1R times V(∞) are needed, respectively. Therefore, analysing dispersion data when working with laboratory scales less than
he asymptotic time scales is not possible using the classical plug dispersion model due to the dispersion transients that can persist
urther downstream. This point can also be clarified if we consider a concentration distribution with μ2 at a point, say 0.36RDL(∞)
or equivalently θ = 0.88 or θ/DL(∞) = 0.36). Based on the plug dispersion model, the asymptotic longitudinal dispersion coefficient

L(∞) can be evaluated from the second moment [4,31].

DL(∞) = μ2

2θ
(40)

rom Fig. 2 and at θ/DL(∞) = 0.36, the value of DL(θ) is approximately 0.7 times DL(∞). At the same θ/DL(∞) value, Fig. 3a gives
2 ∼= 2.2 (or μ2/2θ ∼= 1.25) which is approximately 51% of the asymptotic DL(∞). Therefore, at this time scale, the plug dispersion
odel (Eq. (40)) tends to underestimate the actual dispersion coefficient values in both cases by 30% and 49%, respectively.
Due to the spread of the pulse, the second moment of distribution is always an increasing function in θ (Fig. 3a) and at large times

t increases linearly with time (DL(θ)/DL(∞) → 1) as the case in the plug (Fickian) dispersion models. After a time θ/DL(∞) ≈ 2,
2 follows a straight line and the slope of the line is proportional to the asymptotical dispersion coefficient DL(∞). As shown in
ig. 2 and at short to intermediate time scales, the pulse spreads at a faster rate than at larger times (θ → ∞) where the pulse width is
roportional to the square root of time. According to Eq. (D.12), the second moment is only affected by the second derivative term
n the averaged transport Eq. (16).

Fig. 3b shows that the skewness of the pulse, Γ , will decay at a much faster rate than the kurtosis effect, Δ, and larger dispersion
istances are needed for Δ to attain its asymptotic value. This is clarified by the equations in Appendix D which describe Γ and

as a function of time. For large times, Γ will decrease as θ−1/2 while Δ will approach the limiting value of 3 as θ−1 (Fig. 3b).
hese findings are in accordance with the observations for the case of solute dispersion in empty tubes [77]. Evaluating the higher
rder moments Γ and Δ as a function of time provides a very important tool to study how the concentration distribution approaches
aussinity. For example, at time θ = 4DL(∞), Δ(θ) is 90% of the asymptotic value Δ(∞) = 3 while Γ (θ) is very small and approaches

he asymptotic zero value much faster than Δ(θ). At this time scale, the concentration profile may approach the normal Gaussian
istribution.

In porous media, the mass transport transverse to the flow direction is less than the mass transport in the flow direction and at
ery low flow velocities, it is expected that the rate of transport in both directions will be of the same order of magnitude [78]. The
ffect of varying the flow Peclet numbers PeLm and PeRm on DL(θ) and V(θ) is shown in Fig. 4a and b. The temporal behaviour of
L(θ) and V(θ) is dependent on the negative power of the exponent terms (i.e., θ/PRm) and for larger values of PeRm, one needs

arger dispersion times in order to treat DL and V as constants (i.e., DL(θ)/DL(∞) → 1; V(θ)/V(∞) → 1). The negative power of
he exponent function, λθ or equivalently t〈DT〉/R2, shows that the time scale to reach the asymptotic behaviour of DL(θ) and V(θ)
s controlled by the bed radius and 〈DT〉. The asymptotic time scales of DL(θ) and V(θ) depend on the behaviour of the exponent
unctions in Eqs. (18) and (19). The difference between the two functions (1 − e−λθ) and (1 − λθ)e−λθ is approximately of the form
θ e−λθ . Therefore, as PeRm is increased (i.e, R increases and/or 〈DT〉 decreases), the difference between the two asymptotic time
cales to attain DL(∞) and V(∞) becomes larger as shown in Fig. 4a.

The pulse spread around the mean, μ2, increases significantly with the increase in the Peclet number PeRm, Fig. 4b. This is in

ccordance with the solute dispersion findings in empty tubes where Taylor dispersion effect was found to be proportional to the
ean flow velocity, tube radius and inversely proportinal to the solute diffusion coefficient [5]. The time needed for μ2 to reach the

inear part of the curve μ2 versus θ (Fickian behaviour) becomes larger as PeRm is assigned higher values. This is clearly shown by
q. (D.12) where for high values of PeRm the negative exponent term will approach zero at a slower rate than at lower PeRm values.
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ig. 4. The effect of the flow parameter PeRm on the temporal behaviour of DL(θ) and μ2. (a) DL(θ)/DL(∞); (b) Variance, μ2, for (—) PeRm = PeLm = 20, (- - -)
eRm = 200 and PeLm = 20.

he results show that decreasing the transverse spreading or increasing the bed radius will require larger time scales to reach DL(∞)
nd V(∞).

The expressions for the moments of distribution given in Appendix D, show that the time scales for attaining the asymptotic
(∞) and Δ(∞) are dependent on the ratio θ/PeRm. Changing PeRm have an opposite effect on the temporal behaviour of Γ (θ) and
(θ) as shown in Fig. 5a. While increasing PeRm increases the asymptotic time scale for Δ(θ), it reduces the asymptotic time scale

or Γ (θ). The same results can be reached by careful inspection of the variation of the Γ (θ) and Δ(θ) functions in Appendix D with
eRm. Therefore, assigning high values of PeRm will require larger times for Δ(θ) and less times for Γ (θ) to attain their ultimate
alues. The dependency of Δ(θ) on θ/PeRm can only be studied numerically because of the difficulty in evaluating analytically the
erm

∫ θ

0 K0(θ)K3(θ) dθ. To investigate the dependency of the two terms,
∫ θ

0 K0(θ)K3(θ) dθ and
∫ θ

0 K4(θ) dθ in the Δ(θ) equation in
ppendix D, we define

Ĥ(θ) = 24

μ2
2

∫ θ

0
K4(θ) dθ (41)

nd

Ŝ(θ) = 24

μ2
2

∫ θ

0
K0(θ)K3(θ) dθ (42)

he results of numerical integration of the terms Ĥ(θ) and Ŝ(θ) are shown in Fig. 5b. In general, Ĥ(θ) approaches its ultimate zero
alue at a much faster rate than Ŝ(θ). The effect of Ĥ(θ) is only significant at the early stages of dispersion and its contribution to the
ulse peakedness becomes less significant at larger PeRm values. In this case, the Δ(θ) function in Eq. (D.16) can be approximated
s

Δ(θ) ∼= 3 + 24

μ2
2

∫ θ

0
K0(θ)K3(θ) dθ (43)

ig. 5. The effect of the flow parameter PeRm on the temporal behaviour of Δ(θ), Γ (θ), Ĥ(θ) and Ŝ(θ). (a) Δ(θ) and Γ (θ); (b) Ĥ(θ) and Ŝ(θ), for (—) PeRm = PeLm = 20,
- - -) PeRm = 200 and PeLm = 20.
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Fig. 6. The concentration profile distribution, C∗ =
(√

2πμ2/μ0

)
C̄, vs. x1 at various values of θ. (a) PeRm = PeLm = 20; (b) PeRm = PeLm = 200.

nder such conditions, the contribution of the dispersion term ∂4C̄/∂x4 may be neglected and the average macroscopic transport
q. (16) can be approximated by setting K4(θ) ∼= 0.

The contribution of the Ŝ(θ) controls the pulse peakedness and its effect is expected to persist for larger distances from the
njection point. The asymptotic time scale for Ŝ(θ) to reach Ŝ(∞) is proportional to PeRm (Fig. 5b). Therefore, at larger PeRm values,
ˆ (θ) requires longer dispersion times than Ĥ(θ) to attain their long time behaviour.

.1. Expression of C̄ by an edgeworth series

The observed non-Guassian profiles of C̄ can be presented using the Edgeworth form of the Graham Charlier series type A [79].
he three term Edgeworth series for the non-Gaussian distribution can be expressed as [79].

√
2πμ2

μ0
C̄ = exp

(
−τ2

2

)[
1 + λ3

6
H3(τ) + λ4

24
H4(τ) + λ2

3

72
H6(τ)

]
(44)

he definition of the different terms of the series is shown in Appendix E. The solution of Eq. (16) could be approximated by the
xpansion in Eq. (44). The spatial distribution of C∗ = (√2πμ2/M0

)
C̄ versus x1 at various θ times during the dispersion process

s shown in Fig. 6a and b for PeRm = 20 and 200, respectively. At relatively small times in the dispersion process and provided that
eRm is sufficiently small, the concentration profile could be skewed from the normal distribution as shown in Fig. 6a. Later in the
ispersion process, the skewness of the pulse dies out rapidly and the distribution becomes nearly symmetric but the kurtosis effect
ay persist further downstream and the distribution profile could become slightly flattened. Increasing the flow Peclet number PeRm

educes the skewness of the pulse as shown in Figs. 5b and 6b. However, the peakedness of the pulse is proportional to PeRm as shown
y Ŝ(θ) function in Fig. 5b. Therefore, the mean concentration C̄ at higher values of PeRm (Fig. 6b) exhibits more pulse flatness and
ess skewness than at lower PeRm values (Fig. 6a). The flatness of the profile is merely due to the kurtosis effect as a result of the
ispersive terms ∂3C̄/(∂x2

1∂θ) and ∂4C̄/∂x4
1 where the contribution of the dispersion term ∂3C̄/(∂x2

1∂θ) to the pulse peakedness is
uch more significant than ∂4C̄/∂x4

1 at sufficiently large PeRm as shown from the behaviour of Ĥ(θ) and Ŝ(θ) in Fig. 5b.

. Conclusion

An extended axial non-Fickian macroscopic dispersion model has been developed which provides a more detailed description
f the dispersion process than the existing plug flow dispersion models. The significance of this model is the inclusion of higher
rder, time-dependent dispersion terms and most importantly, the dispersion term ∂3C̄/(∂x2

1∂θ). It was found that this term affects
he peakedness of the distribution and may persist for long times after the introduction of the solute and causes the deviation from
aussinity. The extended model allows evaluating the moments of the distribution as functions of time, thus providing a measure

or the degree of deviation from Gaussinity as the dispersion time increases. This is very important because it provides an estimate
f the dispersion lengths (i.e., equipment dimension) required for attaining time-independent, non-Fickian transients and hence,
pecifies the range of applicability of the conventional plug dispersion models. Pore–scale simulation and the extended model results
how that the time scale for DL(t) to attain the asymptotic dispersion rates is proportional to R2/〈DT〉 and not dependent on the

onvective nor diffusive time scales. Model analysis suggests that DL is not constant unless the approximate criterion θ* ≥ 0.264 is
atisfied. Furthermore, increasing the bed radius and/or decreasing the transverse spreading causes the effect of the dispersion term
3C̄/(∂x2

1∂θ) to persist for larger dispersion distances and therefore, the tracer experiment has to be conducted over longer times to
inimise its effect. The results also show that increasing R as a means to obtain a nearly uniform flow profile over the majority of
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he bed cross section as done by many researchers, will significantly affect the range of applicability of the plug dispersion model.
his is due to the square dependence of the asymptotic time scales on R.

ppendix A

Using the integral transform pair

T̄ =
∫ 1

0
ζJ0(βm, ζ)C̃ dζ (A.1)

C̃ =
∞∑

m=1

J0(βm, ζ)

N(βm)
T̄ (A.2)

he integral transform of Eq. (14) is

∂T̄

∂θ
+ λT̄ − 1

PeLm

∂2T̄

∂x2
1

= ḡ(x1, θ, ζ); (A.3)

λ = 1

PeRm
(βm)2, ḡ(x1, θ) = −1

ε̄

∂C̄

∂x1

∫ 1

0
ζJ0(βm, ζ)ũ dζ + 1

PeLm

∂2C̄

∂x2
1

∫ 1

0
ζJ0(βm, ζ)D̃∗

A dζ

+ 1

ε̄PeLm

∂2C̄

∂x2
1

∫ 1

0
ζJ0(βm, ζ)ε̃ dζ (A.4)

he solution of Eq. (A.3) is given by [35]

T̄ =
∫ θ

t′=0

∫ ∞

ω=−∞
ḡ(x1, θ, ζ)

[4π(θ − t′)/PeLm]1/2 exp(λθ) exp

[
−PeLm

(x1 − w)2

4(θ − t′)

]
dw dt′ (A.5)

ollowing [10], the integral can be approximated by expanding ḡ(x1, θ, ζ) around w = x1 and t = θ and retaining only first order
erms in (w − x1) and (t − θ) to yield

T̄ = ḡ

(
1 − e−λθ

λ

)
−
(

∂ḡ

∂θ
− 1

PeLm

∂2ḡ

∂x2
1

)(
1 − (1 + λθ) e−λθ

λ2

)
(A.6)

sing Eq. (A.2), one can find

(ũC̃) =
∞∑

m=1

ũJ0(βm, ζ)

N(βm)
T̄ (A.7)

(ε̃C̃) =
∞∑

m=1

ε̃J0(βm, ζ)

N(βm)
T̄ (A.8)

(D̃∗
AC̃) =

∞∑
m=1

D̃∗
AJ0(βm, ζ)

N(βm)
T̄ (A.9)

ubstituting Eqs. (A.7)–(A.9) into Eq. (11) yields Eq. (16).

ppendix B

∂C̄

∂θ
= K0(θ)

∂2C̄

∂x2
1

+ K1(θ)
∂2C̄

∂x1∂θ
+ K2(θ)

∂3C̄

∂x3
1

+ K3(θ)
∂3C̄

∂x2
1∂θ

+ K4(θ)
∂4C̄

∂x4
1

+ K5(θ)
∂4C̄

∂x3
1∂θ

(B.1)
here

K0(θ) = −
∞∑

m=1

ũJ0(βm, ζ)

ε̄N (βm)

(
1 − e−λθ

λ

)
A0 + 1

PeLm
+ D̃∗

Aε̃

ε̄PeLm
−

∞∑
m=1

ε̃J0(βm, ζ)

ε̄N(βm)
e−λθB0 (B.2)
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K1(θ) = −
∞∑

m=1

ε̃J0(βm, ζ)

2ε̄N(βm)

(
1 − e−λθ

λ

)
A0 +

∞∑
m=1

ε̃J0(βm, ζ)

ε̄N(βm)
θ e−λθA0 −

∞∑
m=1

ũJ0(βm, ζ)

2ε̄N(βm)

(
1 − e−λθ

λ

)
E0 (B.3)

K2(θ) = 1

PeLm

( ∞∑
m=1

D̃∗
AJ0(βm, ζ)

N(βm)

(
1 − e−λθ

λ

)
A0 + 1

ε̄

∞∑
m=1

ε̃J0(βm, ζ)

N(βm)

(
1 − e−λθ

λ

)
A0 − 1

ε̄

∞∑
m=1

ε̃J0(βm, ζ)

N(βm)
θ e−λθA0

−
∞∑

m=1

ũJ0(βm, ζ)

ε̄N(βm)

(
1 − e−λθ

λ

)
B0

)
(B.4)

K3(θ) = −
∞∑

m=1

ε̃J0(βm, ζ)

ε̄N(βm)

(
1 − e−λθ

λ

)
B0 +

∞∑
m=1

ε̃J0(βm, ζ)

ε̄N(βm)
θ e−λθB0 −

∞∑
m=1

ũJ0(βm, ζ)

ε̄N(βm)

(
1 − (1 + λθ)e−λθ

λ2

)
A0 (B.5)

K4(θ) = 1

PeLm

(
−

∞∑
m=1

ũJ0(βm, ζ)

ε̄N(βm)

(
1 − (1 + λθ)e−λθ

λ2

)
A0 + 1

ε̄

∞∑
m=1

ε̃J0(βm, ζ)

N(βm)

(
1 − e−λθ

λ

)
B0

+
∞∑

m=1

D̃∗
AJ0(βm, ζ)

N(βm)

(
1 − e−λθ

λ

)
B0 − 1

ε̄

∞∑
m=1

ε̃J0(βm, ζ)

N(βm)
θ e−λθB0

)
(B.6)

K5(θ) = − 2

PeLm

∞∑
m=1

D̃∗
AJ0(βm, ζ)

N(βm)

(
1 − (1 + λθ) e−λθ

λ2

)
A0 − 3

ε̄PeLm

∞∑
m=1

ε̃J0(βm, ζ)

N(βm)

(
1 − (1 + λθ) e−λθ

λ2

)
A0 (B.7)

t large times,

K0(∞) = −
∞∑

m=1

ũJ0(βm, ζ)

λε̄N(βm)
A0 + 1

PeLm
+ D̃∗

Aε̃

ε̄PeLm
(B.8)

K1(∞) = −
∞∑

m=1

ε̃J0(βm, ζ)

2λε̄N(βm)
A0 −

∞∑
m=1

ũJ0(βm, ζ)

2λε̄N(βm)
E0 (B.9)

K2(∞) = 1

PeLm

( ∞∑
m=1

D̃∗
AJ0(βm, ζ)

λN(βm)
A0 + 1

ε̄

∞∑
m=1

ε̃J0(βm, ζ)

λN(βm)
A0 −

∞∑
m=1

ũJ0(βm, ζ)

λε̄N(βm)
B0

)
(B.10)

K3(∞) = −
∞∑

m=1

ε̃J0(βm, ζ)

λε̄N(βm)
B0 −

∞∑
m=1

ũJ0(βm, ζ)

λ2ε̄N(βm)
A0 (B.11)
K4(∞) = 1

PeLm

(
−

∞∑
m=1

ũJ0(βm, ζ)

λ2ε̄N(βm)
A0 + 1

ε̄

∞∑
m=1

ε̃J0(βm, ζ)

λN(βm)
B0 +

∞∑
m=1

D̃∗
AJ0(βm, ζ)

λN(βm)
B0

)
(B.12)

K5(∞) = − 2

PeLm

∞∑
m=1

D̃∗
AJ0(βm, ζ)

λ2N(βm)
A0 − 3

ε̄PeLm

∞∑
m=1

ε̃J0(βm, ζ)

λ2N(βm)
A0 (B.13)

here

A0 = −1

ε̄

∫ 1

0
ζJ0(βm, ζ)ũ dζ (B.14)
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B0 = 1

PeLm

[
−E0 +

∫ 1

0
ζJ0(βm, ζ)D̃∗

A dζ

]
(B.15)

E0 = −1

ε̄

∫ 1

0
ζJ0(βm, ζ)ε̃ dζ (B.16)

ppendix C

By substituting for λ from (A.4) and DL from (D.3) into Eqs. (30)–(33), the approximate criteria in terms of PeRm and PeLm are

PeLm + (1/PeRm)

2αL
L∗ � 1 (C.1)

PeLm + 1/PeRm

PeRm + α2
L

L∗2 � 1 (C.2)

(
1

PeRm
+ 1

PeLmPe2
Rm

)
θ � 1 (C.3)

Pe2
Lm

2αL

(
1

PeRm
+ 1

PeLmPeRm

)
L∗θ � 1 (C.4)

ppendix D

The resistance offered by the packing to a flowing fluid according to the Darcy equation is given by

u = ū + ũ = −Kr

μ

∂P

∂z
= − (K̄r + K̃r)

μ

∂P

∂z
(D.1)

here Kr = Kp/ε; Kp is the permeability of the porous medium and ∂P/∂z is the pressure gradient in the flow direction.
Using Eq. (D.1), the velocity perturbation ũ is related to the perturbation in the permeability K̃r by

ũ

ū
∼= K̃r

K̄r
(D.2)

he same result was also obtained in ref. [75]. The longitudinal dispersion coefficient can be written in the elementary form (molecular
iffusion effect was neglected for simplicity)

DL = αLu (D.3)

sing Eqs. (D.2) and (D.3), the perturbation in DL can be approximated by

D̃∗
L

∼= αLū
K̃r

K̄r
(D.4)

he porosity variation shows an oscillatory variation from the wall [18] and Eq. (D.5) is an empirical fit of these data

ε(Y ) = 0.38 + 0.62 exp(−1.70Y0.434) cos(6.67Y1.13) (D.5)

here

Y = (1 − ζ)R

2a
(D.6)

he relation between the permeability variation and the void fraction is given by [76]

Kr = Kp

ε
= K̄r + K̃r = d2

p

180

ε2

(1 − ε)2 (D.7)
he perturbation K̃r can be presented as

K̃r

K̄r
= ε2

2[(1 − ε)2 ∫ 1
0 ζε2/(1 − ε)2dζ]

− 1 (D.8)



E

w
t

N

T

E. Hamdan et al. / Chemical Engineering Journal 137 (2008) 614–635 633

q. (16) can be re-writen as

∂C̄

∂θ
= K0(θ)

∂2C̄

∂x2
1

+ K2(θ)
∂3C̄

∂x3
1

+ K3(θ)
∂3C̄

∂x2
1∂θ

+ K4(θ)
∂4C̄

∂x4
1

+ K5(θ)
∂4C̄

∂x3
1∂θ

(D.9)

here K0(θ)–K5(θ) are the same in (B.2)–(B.7) with ε̃ = 0 and ε̄ = 1. The different moments of the distribution which corresponds
o a pulse injection of tracer at x = 0 when t = 0 are found from [6]

dMp

dθ
= K0(θ)p(p − 1)Mp−2 − K2(θ)p(p − 1)(p − 2)Mp−3 + K3(θ)p(p − 1)

dMp−2

dθ

+ K4(θ)p(p − 1)(p − 2)(p − 3)Mp−4 (D.10)

ormalizing the moments with M0 (=constant) and integrating w.r.t. θ, the main features of the distribution are

Mean

μ1 = 0 (D.11)

Variance

μ2 = 2
∞∑

m=1

ũJ0(βm, ζ)

λN(βm)

(
θ + e−λθ

λ
− 1

λ

) 1∫
0

ζJ0(βm, ζ)ũ dζ + 2θ

PeLm
(D.12)

Skewness

Γ = μ3

μ
3/2
2

(D.13)

Kurtosis

Δ = μ4

μ2
2

(D.14)

where

μ3 = −6
∫ θ

0
K2(θ) (D.15)

μ4

μ2
2

− 3 = 24

μ2
2

(∫ θ

0
K4(θ) +

∫ θ

0
K0(θ)K3(θ)

)
(D.16)

he integrals in Eqs. (18), (19) and (D.12)–(D.16) are evaluated using the functions in Eqs. (D.2), (D.4) and (D.8) as

DL(θ)

DL(∞)
=

4PeRm

∞∑
m=1

(Area/(βmJ0(βm, ζ)))2(1 − e−λθ) + 1/PeLm

4PeRm

∞∑
m=1

(Area/(βmJ0(βm, ζ)))2 + 1/PeLm

(D.17)

V (θ)

V (∞)
=

4Pe2
Rm

∞∑
m=1

(Area/(β2
mJ0(βm, ζ)))

2
(1 − (1 + λθ) e−λθ)

4Pe2
Rm

∞∑
m=1

(Area 0/(β2
mJ0(βm, ζ)))2

(D.18)

μ2 = 2

(
4PeRm

∞∑(
Area

β J (β , ζ)

)2(
θ − 1

λ
+ e−λθ

λ

)
+ θ

Pe

)
(D.19)
m=1 m 0 m Lm

Γ = 48
(
(αPeRm/PeLm)

∑∞
m=1(Area/(βmJ0(βm, ζ)))2(θ − (1/λ) + (e−λθ/λ))

)
(2)3/2

(
4PeRm

∑∞
m=1(Area/(βmJ0(βm, ζ)))2(θ − (1/λ) + (e−λθ/λ)) + θ/PeLm

)3/2 (D.20)
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Δ = 3 + 24

μ2
2

{
4
Pe2

Rm

PeLm

∞∑
m=1

(
Area

β2
mJ0(βm, ζ)

)2(
θ − 2

λ
+ 2e−λθ

λ
+ θ e−λθ

)
+ 4

PeRm

Pe2
Lm

∞∑
m=1

(
Area

βmJ0(βm, ζ)

)2

×
(

θ − 1

λ
+ e−λθ

λ

)
−
∫ θ

0
K1(θ)K3(θ) dθ

}
(D.21)

Area =
∫ 1

0
ζJ0(βm, ζ)ũ dζ (D.22)

ppendix E

The three term Edgeworth series expansion has been used to approximate the concentration distribution
√

2πμ2

μ0
C̄ = exp

(
−τ2

2

)[
1 + λ3

6
H3(τ) + λ4

24
H4(τ) + λ2

3

72
H6(τ)

]
; (E.1)

τ = x1

σ
(E.2)

λ2 = μ2; λ3 = Γ ; λ4 = Δ − 3 (E.3)

H3(τ) = τ3 − 3τ H4(τ) = τ4 − 6τ2 + 3 H6(τ) = τ6 − 15τ4 + 45τ2 − 15 (E.4)
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